2 research outputs found

    Scaling up Probabilistic Inference in Linear and Non-Linear Hybrid Domains by Leveraging Knowledge Compilation.

    Get PDF
    Weighted model integration (WMI) extends weighted model counting (WMC) in providing a computational abstraction for probabilistic inference in mixed discrete-continuous domains. WMC has emerged as an assembly language for state-of-the-art reasoning in Bayesian networks, factor graphs, probabilistic programs and probabilistic databases. In this regard, WMI shows immense promise to be much more widely applicable, especially as many real-world applications involve attribute and feature spaces that are continuous and mixed. Nonetheless, state-of-the-art tools for WMI are limited and less mature than their propositional counterparts. In this work, we propose a new implementation regime that leverages propositional knowledge compilation for scaling up inference. In particular, we use sentential decision diagrams, a tractable representation of Boolean functions, as the underlying model counting and model enumeration scheme. Our regime performs competitively to state-of-the-art WMI systems but is also shown to handle a specific class of non-linear constraints over non-linear potentials.Comment: In proceedings of ICAART, 2020. A version also appears in AAAI Workshop: Statistical Relational Artificial Intelligence (StarAI), 202

    Logical Interpretations of Autoencoders

    Get PDF
    The unification of low-level perception and high-level reasoning is a long-standing problem in artificial intelligence, which has the potential to not only bring the areas of logic and learning closer together but also demonstrate how abstract concepts might emerge from sensory data. Precisely because deep learning methods dominate perception-based learning, including vision, speech, and linguistic grammar, there is fast-growing literature on how to integrate symbolic reasoning and deep learning. Broadly, efforts seem to fall into three camps: those focused on defining a logic whose formulas capture deep learning, ones that integrate symbolic constraints in deep learning, and others that allow neural computations and symbolic reasoning to co-exist separately, to enjoy the strengths of both worlds. In this paper, we identify another dimension to this inquiry: what do the hidden layers really capture, and how can we reason about that logically? In particular, we consider autoencoders that are widely used for dimensionality reduction and inject a symbolic generative framework onto the feature layer. This allows us, among other things, to generate example images for a class to get a sense of what was learned. Moreover, the modular structure of the proposed model makes it possible to learn relations over multiple images at a time, as well as handle noisy labels. Our empirical evaluations show the promise of this inquiry
    corecore